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ABSTRACT 1 
The stated choice (SC) experiment is generally regarded as an effective way to obtain data for 2 

discrete choice analysis. The SC experimental design method, which determines the rule to allocate 3 

different levels for each attribute in choice situations, will have a great impact on parameter 4 

estimation. The optimal orthogonal choice (OOC) design is one of the most efficient SC designs, by 5 

which more reliable parameter estimates can be achieved with an equal or lower sample size. 6 

However, OOC design can only be applied to utility models with generic attributes; using it to assign 7 

alternative-specific attribute levels is not fully discussed in literature. This paper provides a method 8 

to extend the use of OOC design to alternative-specific attributes. Column vectors for 9 

alternative-specific attributes are introduced and the value of each vector is forced to be orthogonal 10 

with other generic attributes in a same alternative. In this way, orthogonality of OOC design is kept 11 

within individual alternative but not necessarily across alternatives. The proposed method was 12 

compared with traditional orthogonal design and D-efficient design (another state-of-the-art efficient 13 

design method). Three experiments using field data on mode choice were conducted. The result 14 

shows that both proposed method and D-efficient design have a higher efficiency than the 15 

orthogonal design. In addition, under the complex experiment setting environment in real world, the 16 

proposed method outperforms D-efficient design in the sense that almost the same efficiency can be 17 

obtained while avoiding multiple iterations for optimal solution. 18 

 19 
KEY WORDS: EFFICIENT DESIGN, OPTIMAL ORTHOGONAL, EFFICIENCY, LOGIT 20 

MODEL 21 

  22 
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1. INTRODUCTION 1 

Revealed preference (RP) and stated preference (SP) data have long been regarded as the two main 2 

data paradigms for discrete choice analysis. The purpose of conducting RP or SP experiments is to 3 

collect data that can be used to estimate the independent influence of attributes on observed choices. 4 

Increasingly, the emphasis has shifted from ‘stated preference’ data to ‘stated choice’ (SC) data 5 

which resembles revealed preference data as closely as possible and can be analyzed with similar 6 

techniques, such as discrete choice logit or probit estimation (1,2). The popularity of SC experiments 7 

lies in two aspects: First, it can obtain choices on alternatives which do not exist in the current 8 

market. Thus analysts are able to predict, for example, the market share of a proposed transportation 9 

mode. Second, it can provide variability in attributes in a relatively small sample size, compared 10 

with RP experiment, so that better estimation of influence of each attribute on choice can be 11 

achieved. Usually, SC experiments present sampled respondents with a ‘selected’ number of 12 

different hypothetical choice situations, each consisting of a universal but finite set of alternatives 13 

defined on a number of attribute dimensions. Obviously, making choices among all the possible 14 

combinations of attribute levels is too many to accomplish for a single respondent. How analysts 15 

distribute attribute levels in an experiment design plays a big role. It may impact the performance of 16 

independent assessment for attributes contribution to observed choices. It also implies the ability of 17 

the experiment to detect statistical relationships that may exist within the data.  18 

Historically, researchers have relied on orthogonal experimental designs, in which the attributes 19 

of the experiment are statistically independent by forcing them to be orthogonal (3). In this way, 20 

orthogonal designs theoretically allow for an independent determination of each attribute’s influence 21 

upon the observed choices. There are several approaches to generate full or fractional factorial 22 

orthogonal design (4,5,6,7). While orthogonal design has long been used in practice, researchers in 23 

recent years argue the importance of orthogonality in SC data. They doubted the effectiveness when 24 

orthogonal design is used to estimate discrete choice model, not to mention whether orthogonality 25 

can be kept in reality ( 8 , 9 ). Orthogonality is important in linear models since it avoids 26 

multicollinearity problem and also minimize variance-covariance matrix of the estimated model. 27 

Unfortunately, discrete choice model is nonlinear. The derivation of its variance-covariance matrix is 28 

very different from the way in linear models. Therefore, keeping orthogonality of the parameters has 29 

little to do with minimizing their standard errors. 30 

Acknowledgement of this fact has led researchers to develop the so-called efficient 31 

experimental designs. These designs are capable of producing more efficient data in the sense that 32 

more reliable parameter estimates can be achieved with an equal or lower sample size. To date, two 33 

kinds of efficient designs arouse more attention. One is called optimal orthogonal choice (OOC) 34 

design, which aims at maximizing attribute level differences as well as keeping orthogonality within 35 

alternatives. Another is the D-efficient design, the core of which is minimizing D-error, a statistic 36 

corresponding to the asymptotic variance-covariance (AVC) matrix of the discrete choice model, to 37 

get the smallest asymptotic standard error (i.e., square roots of the variances). The fundamental idea 38 

of OOC design can be derived from the work of Bunch and Louviere in 1994. They proposed a new 39 

strategy of ‘shifting codes’ in a two-level main effects design, called “Shifted Paris/ Fold-over” 40 

design (5). Later, Street and Burgess in 2004 construed optimal and near-optimal sets of pairs for 41 

estimation of main effects and two factor interactions (10). All the attributes are forced to have two 42 

levels at that time. Continuously, they developed the optimal design with asymmetric attributes in 43 

2005 and 2006 (11,12). However, the current OOC method can only generate designs for generic 44 

attributes across alternatives (8). How alternative-specific attributes distribute is rarely discussed in 45 

literature. On the other side, D-efficient design does not suffer from these kinds of attribute setting 46 

and fitting problem. But to conduct a D-efficient design requires very complex computation work 47 

since the AVC matrix needs to be build and optimized. If OOC could be extended to a more general 48 

case, it can probably help analysts obtain high efficient designs in a more convenient way. 49 

This paper targets on presenting the following contributions to the literature: first, a method 50 

which can extend the use of OOC design into alternative-specific attributes is provided. Real 51 

experiment environment is settled in case study to exam the feasibility of our proposed method. 52 

Second, a systematic and comprehensive evaluation is presented by comparing OOC design with 53 

traditional orthogonal design and the-state-of-art D-efficient design. 54 
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The remainder of this paper is organized as follows. In section 2, a detailed method of 1 

improving OOC design is introduced. In section 3, SC experiment designs using orthogonal, OOC, 2 

D-efficient design method separately are generated. Efficiency of each design in terms of D-error is 3 

calculated and carefully analyzed in section 4. Section 5 provides conclusions and points at avenues 4 

for further research. 5 

2. IMPROVING OPTIMAL ORTHOGONAL CHOICE DESIGN 6 

Usually, an experimental design may consist of several generic attributes and alternative-specific 7 

attributes (at least one of them). In this section, the proposed method is introduced in two stages: 1) 8 

generating OOC design for generic attributes, 2) adding column vectors for alternative-specific 9 

attributes. 10 

2.1 Generating Design for Generic Attributes 11 

The essential idea of OOC design is to maximize the differences of attribute levels across 12 

alternatives by forcing generic attributes never taking the same level over the experiment. In this way, 13 

parameters can be estimated in the largest extend of variety of attribute levels independently. For a 14 

general experimental design, we can assign levels for generic attributes following the basic process: 15 

Step 1: generate a fractional factorial orthogonal design for alternative 1. N represents the 16 

number of choice situations of the design. 17 

Step 2: choose some systematic changes to get the allocation of attribute levels in alternative 2 18 

from alternative 1. Systematic changes are certain rules to decide how the attribute levels change 19 

from alternative 1 and will be discussed in later context. 20 

Step 3: choose another systematic changes to get the allocation of attribute levels in alternative 21 

3 from alternative 1. 22 

Step 4: keep doing this until all the alternatives are determined. 23 

It will be much easier to understand OOC design by starting with a binary attribute level design. 24 

Here, assume that *k
L  is the number of levels assigned to attribute *k  for alternative j, 25 

represented by 0, 1,…, * -1
k

L  and all the attributes are generic across alternatives. 
*

knx  is the level 26 

for attribute *k  in choice situation n.  In a design for 2 alternatives and 3 attributes each with 2 27 

levels, an orthogonal design in 4 choice situations for alternative 1 can be firstly generated. Then 0’s 28 

and 1’s in alternative 1 are interchanged in alternative 2. Thus the levels of each attribute are forced 29 

to be different across alternatives. The result is shown in Table 1. 30 
TABLE 1  Optimal Orthogonal Choice Design for 2 Alternatives with 3 Binary Attributes 31 

 
alternative 1 alternative 2 

choice situation 
*

1X  *

2X  *

3X  *

1X  *

2X  *

3X  

1 0 0 0 1 1 1 

2 0 1 1 1 0 0 

3 1 0 1 0 1 0 

4 1 1 0 0 0 1 

 32 

To generate OOC design for more alternatives, it is necessary to introduce *k
S  to represent the 33 

largest number of different pairs appeared between alternatives for a specific attribute. The equation 34 

of *k
S  is shown as follows. Where J stands for the number of alternatives in choice set. 35 

TRB 2014 Annual Meeting Paper revised from original submittal.



Tang, Luo, Cheng, Yang, Ran                                                           5 

 

 

  
 

*

*

*

* *

*

2

2

2 2

1 / 4 2, ,

/ 4 2, ,
=

2 / 2 2 ,

1 / 2

k

k

k

k k

k

J l J odd

J l J even
S

J l x xy y l

is

i

J

J J l J

s

  





    
  

……………  

 

……

………………………

…

……………

 

……

 
 (1) 1 

In an example of OOC design for 3 alternatives and 3 attributes each with 2 levels shown in 2 

TABLE 2,  *

2= 1 / 4=2
k

S J   can be calculated for all the attributes. For instance, in the first 3 

choice situation (000, 110, 001), the attribute levels differ twice for each attribute (i.e. for attribute4 
*

1X , the levels are 010, creating 3 pairs (01, 10, 00) in which two of them (01, 10) are different).  5 

Seeing from TABLE 2, the distribution of attribute levels in alternative 2 is obtained by 6 

interchanging 0’s and 1’s in *

1X  and *

2X  in alternative 1, and in alternative 3 it is obtained by 7 

interchanging 0’s and 1’s in 
*

3X  in alternative 1. These systematic changes can be also described as 8 

adding a generator in alternative 1 to get alternative 2 and adding another generator to get alternative 9 

3. The addition is performed in modulo arithmetic according to the number of levels for a specific 10 

attribute. Here in the example, * =2
k

L  for all attributes, thus alternative 2 is obtained when a 11 

generator 110 is added to the choice situations in alternative 1 in modulo 2 arithmetic like this:12 
000+110 110 , 011+110 101 , and so on. Alternative 3 is generated in the same way by adding a 13 

generator 001 to alternative 1. Notice that the generators added to alternatives must have a value of 14 

* =2
k

S  (i.e. generators (000,110,001) used in TABLE 2 can meet the requirement while another 15 

generators (000, 100, 010) can’t not).  16 
TABLE 2  Optimal Orthogonal Choice Design for 3 Alternatives with 3 Binary Attributes 17 

 
alternative 1 alternative 2 alternative 3 

choice situation 
*

1X  *

2X  *

3X  *

1X  *

2X  *

3X  *

1X  *

2X  *

3X  

1 0 0 0 1 1 0 0 0 1 

2 0 1 1 1 0 1 0 1 0 

3 1 0 1 0 1 1 1 0 0 

4 1 1 0 0 0 0 1 1 1 

 18 

2.2 Adding Alternative-specific Attributes in OOC Design 19 

Although OOC designs for any choice set size with any number of attributes each having any 20 

number of levels can be generated in similar way, this method will not work where 21 

alternative-specific attributes are introduced according to its basic idea. However, in transportation 22 

area, choice analysis always involves alternatives with their own specific attributes (i.e. parking fare 23 

for car or waiting time for public transit). To extend the use of OOC, column vectors are added for 24 

alternative-specific attributes on the base of OOC design. The total number of column vectors kX  25 

equals to the total number of alternative-specific attribute k  in the discrete choice model. Again, 26 

we assume kL  is the number of levels assigned to attribute k  for alternative j, represented by 0, 27 

1,…, -1kL . The dimension of vector kX  equals to the total number of choice situations N in the 28 

former design generated for generic attributes. Here, it is noteworthy that the degree of freedom, 29 

which directly related to the minimum number of choice situations N of the design, should be kept 30 

after introducing alternative-specific attributes in the model. That is to say, the size of an OOC 31 

design only with generic attributes might be small. But when alternative-specific attributes are added, 32 

a larger size of design is required to reach at the same degree of freedom so that enough observations 33 

can be obtained for parameter estimation. Thus, when generating OOC design for generic attributes 34 

in the first step, the number of choice situation N should be determined by considering the total 35 

number of all the attributes including alternative-specific attributes. 36 

To maintain the principle of OOC design, two constrains should be satisfied when calculating 37 
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the value of kX : 1 

 Every level kl  in kX  appears at same times. 2 

 The matrix that consists of kX  and *k
X  within the same alternative j is orthogonal (i.e. the 3 

covariance matrix of it is a diagonal matrix). 4 

For alternatives with more than one specific attributes, the logic is calculating kX s one by one. 5 

For example, 1X  , 2X  are two specific attributes and *

1X  , *

2X  are two generic attributes for 6 

alternative j. First, 1X  is determined by following the above rules. Then the feasible solution of 7 

2X  is the one that being orthogonal with the new matrix constructed by *

1X , *

2X  and 1X . It is very 8 

likely that the solution of the column vector is not unique, especially in a design with high 9 

dimension.  10 

3. CASE STUDY 11 

In this section, three experimental designs are generated using different methods (orthogonal, OOC 12 

and D-efficient design) for obtaining trip mode choice data on a corridor connecting downtown and 13 

suburb area in Chengdu. In section 3.1, a typical multinomial logit (MNL) model is formulated. 14 

Prior parameter values and attribute levels are settled. How to measure the statistical efficiency of 15 

SC experiments is discussed in section 3.2. Experimental design results are presented in section 3.3. 16 

3.1 Model Formulation and Stimuli Refinement 17 

The field data for the case study is collected in Chengdu, a large city located in southwest China. 18 

Four alternatives are involved: car, taxi, bus and subway. By far, car, taxi and bus are the existing 19 

transport modes. The subway, No. 2 West Extended Line, is still under construction and will be 20 

operating on June 1st, 2013. It starts from Xipu Town and ends at the Yingbin Avenue, then 21 

connected with the existing No. 2 Line. The opening of the subway is expected to change people’s 22 

travel mode choice behavior and help release the heavy traffic congestion on the roads in the 23 

northwest area of the city. The new campus of Southwest Jiaotong University which is located in 24 

northwest suburb area and Shuhan Road which is located in the west part of downtown area are 25 

chosen as the origin and destination. Transport mode choice data will be collected based on the 26 

experimental design generated in this section. 27 

According to a previous study (13) on comparing MNL and nested logit (NL), there is no 28 

statistical significant difference in terms of parameter calibration between MNL and NL models. 29 

Thus a typical MNL model in transportation is formulated and serves as the basis of most of the 30 

analyses in the subsequent section. The observed part of utility of every alternative is expressed as 31 

follows: 32 

 0 1 2 3

car car car car carV TT TC PF       , (2) 33 

 0 1 2

taxi taxi taxi taxiV TT TC     , (3) 34 

 0 1 2 4

bus bus bus bus busV TT TC WT       , (4) 35 

 1 2 4

sub sub sub subV TT TC WT     , (5) 36 

Where TT represents travel time, TC represents travel cost, PF represents parking fare and WT 37 

represents waiting time. For car users, TC equals to the fuel cost. For taxi users, TC equals to the 38 

money paid for the trip. And for bus and subway users, TC equals to the ticket price. WT is the time 39 

period between people arriving at the station/stop and before they getting on board. Seeing from 40 

Equations (2)-(5), parameters for TT and TC are generic across four alternatives and parameters for 41 

WT are generic across bus and subway. PF is the alternative specific parameter for alternative car. 42 

Thus, seven parameters are going to be estimated in total (three of them are alternative-specific 43 

constant, which has nothing to do with any attribute). The attribute levels and prior information 44 

about parameters are given in TABLE 3 based on previous study results as well as to preserve 45 

realistic estimates for the private and public transport alternatives. 46 
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TABLE 3  Prior Parameter Values and Attribute Levels for Case Study 1 
prior parameter values 

0

car
 

0

taxi
 

0

bus
 

1
 

2
 

3
 

4
 

1.2 -0.7 -1.2 -0.04 -0.25 -0.12 -0.02 

attribute level 

car taxi bus subway 
carTT  carTC  carPF  taxiTT  taxiTC  busTT  busTC  busWT  subTT  subTC  subWT  

24 7 8 24 27 45 1 5 20 2 3 

30 9 10 30 33 55 2 8 24 3 4 

35 11 15 35 40 65 3 10 27 4 5 

In order to obtain better estimation of parameters, three levels are set for each attribute to 2 

maximize variations of the attribute as much as possible. The values of carTT , taxiTT  and busTT are 3 

measured in free, normal and congested traffic flow. Since the No.2 West Extended Line has not 4 

operated now, we have to estimate the values of subTT  by assuming the travel speed are 27 km/h, 5 

30 km/h (current situation) and 35 km/h. The values of carPF  are given as the current, 25% and 50% 6 

increased price. The values of carTC  are calculated as the kilometers between the OD multiplied by 7 

the consumed oil price under 7.3 RMB/km, 7.7 RMB/km and 8 RMB/km. The values of taxiTC  are 8 

measured in free, normal and congested traffic flow. The values of busTC and subTC are based on the 9 

current price and plus/minus 1 RMB. The values of busWT  and subWT  are determined based on 10 

the departing time interval.  11 

The number of choice situations (i.e. 36) is selected such that both attribute level balance and 12 

orthogonality can be achieved. Obviously, this number is too large for a single respondent. Thus, a 13 

block variable is introduced to divide the design into smaller parts (i.e. here we block the design into 14 

six parts so that six choice situations are provided to a single respondent). Each block is not 15 

orthogonal by itself, but in combination with other blocks. Attribute level balance is maintained as 16 

much as possible in each block. 17 

3.2 Measure of Efficiency 18 

To compare the statistical efficiency of SC experimental designs, a number of measurements have 19 

been proposed in the literature (5,14,15,16). The preferred measure among them is D-error, a statistic 20 

corresponding to the AVC matrix of the discrete choice model. To interpret the process of calculating 21 

it, here we briefly introduce the most well known multinomial logit model. Other models, like nested 22 

logit, can also be used to determine the value of D-error (9). 23 

Assume an individual faced with alternative 1,2,...,j J  in choice situation 1,2,...,n N . The 24 

utility of an individual for alternative j in choice situation n can be expressed as: 25 

 jn jn jnU V   , (6) 26 

jnV  represents observed part of utility for each alternative j in choice situation n. It is assumed 27 

to be a linear additive function of several attributes with corresponding weights. The generic 28 

parameters and alternative-specific parameters can be denoted by 
*

k , *1,...,k K and jk , 29 

1,..., jk K , respectively, with their associated attribute levels 
*

jknx  and jknx  for each choice 30 

situation n. Thus, the total number of parameters to be estimated is equal to 
*

1

=
J

j

j

K K K


 . jnV  ，31 

expressed as:  32 

 

*

* *

1 1

=
jKK

jn k jkn jk jkn

k k

V x x 
 

  , 1,..., , 1,...,j J n N    , (7) 33 

jn  is the unobserved component, independently and identically extreme value type Ⅰ 34 

distributed. The probability jnP  that an individual choose alternative j in choice situation n 35 

becomes: 36 
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1

exp
= ,

exp( )

jn

jn J

jn

j

V
P

V



 1,..., , 1,...,j J n N    , (8) 1 

Considering the most popular way to estimate parameters is maximum likelihood estimation, 2 

the log-likelihood function of parameters for a single respondent can be expressed as: 3 

 *

1 1

, log
N J

jn jn

n j

L y P 
 

  4 

* *

* * * *

1 1 1 1 1 1 1

= log exp
j jK KN J K J K

jn k jkn jk jkn k jkn jk jkn

n j k k i k k

y x x x x   
      

     
                 

       , (9) 5 

Where y represents the binary outcome of all choice situations. While alternative j is chosen in 6 

choice situation n, jny  equals one, otherwise it is zero. Then the AVC matrix can be expressed as 7 

the second derivative of the log-likelihood function as follows: 8 

 
1 1 2

1 2

2 *

* * *

* *
1 1 1

,
,

N J J

jk n jn jk n ik n in

n j ik k

L
x P x x P

 

    

  
  

   
   

*

1 2, 1,...,k k K  , (10) 9 

 
1 1 1 1 2 2

1 1 2

2 *

* *

*
1 1

,
,

N J

j k n j n j k n ik n in

n ij k k

L
x P x x P

 

   

  
  

   
   10 

1

*

1 1 21,..., , 1,..., , 1,...,jj J k K k K    , (11) 11 

 

 

1 1 2 2 1 2

1 1 2 2
1 1 2 2 1 2

2 *
1 2

1

1 2

1

.............. .

.. .

, ;,

1 , ..

N

j k n j k n j n j n

n
N

j k j k
j k n j k n j n j n

n

x x P P if j jL

x x P P if j j

 

 





  

 
    






 1 1,..., , 1,...,

ii jj J k K   , (12) 12 

Equations (6)-(8) represent functions that allow generic and alternative-specific parameters. In 13 

the case where only generic parameters exist, only Eq. (10) remains, and when there are only 14 

alternative-specific parameters, Eq. (12) remains. In addition, if there are M identical respondents, 15 

these second derivatives are multiplied by M. But it is common to assume a single respondent (i.e. 16 

M=1) representative of all respondents, which is consistent with the MNL model form. 17 

The AVC matrix can be obtained by taking the negative inverse of the expected second 18 

derivatives of the log-likelihood function of the model (17). Let  *,   denote the true values of 19 

the parameters. The Fisher information matrix I is defined as the expected values of the second 20 

derivative of the log-likelihood function: 21 

  
 2 *

*

'

,
,

L
I M

 
 

 


 

 
, (13) 22 

The AVC matrix can be expressed as a K K  matrix that equals to the negative inverse of the 23 

Fisher information matrix: 24 

  
 

1
2 *

1
*

'

,1
= ,

L
I

M

 
 

 



  
      
     

, (14) 25 

D-error is calculated by taking the determinant of the AVC matrix and scaling this value by the 26 

number of parameters K . Since the calculation of D-error involves with the values of parameters, 27 

approaches to determine D-error have been improved in recent years. Early work assumed all 28 

parameters were zero, which means the analyst has no information of the true parameters values at 29 

all. This assumption results in the term -zD error  and is shown as: 30 

 
 

1
2

'

0,0
- = det

K

z

L
D error

 



 
  

  
, (15) 31 
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Later work assumed non-zero priors that were known with certainty termed as -pD error : 1 

 
 

1
2 *

'

,
- = det

K

p

L
D error

 

 



 
 

   

, (16) 2 

More recently, researchers have begun to examine efficient designs where the true population 3 

parameters are not known with certainty but can be drawn from Bayesian parameter distributions 4 

(with parameter  ), which is termed as -bD error : 5 

 
 

 

1
2 *

'

,
- = det

K

b

L
D error d



 
   

 



 
 

  
 

 . (17) 6 

In our case study, -pD error  is chosen as the statistic to measure the efficiency of experimental 7 

designs. 8 

3.3 Experimental Design 9 

Three different (attribute level balanced) designs with 36 choice situations are generated in this 10 

section. During the process of generating design, orthogonal coding is used to replace the real value 11 

of each attribute level. For a three-level attribute, -1, 0, 1 are assigned to represent low, medium and 12 

high level respectively. After getting the results, real values are substituted again. The final design 13 

results are shown in TABLE 4 as well as D-error value for each design. 14 
TABLE 4  Experimental Designs for Case Study 15 

s 

car taxi bus subway 

Block carTT
(min) 

carTC  

(RMB) 

carPF  

(RMB) 

taxiTT
(min) 

taxiTC  

(RMB) 

busTT  

(min) 

busTC  

(RMB) 

busWT
(min) 

subTT  

(min) 

subTC  

(RMB) 

subWT  

(min) 

Orthogonal design for MNL model (D-error=0.12362) 

1 24 7 10 30 33 55 2 5 20 2 4 1 

2 30 9 8 24 27 45 2 8 24 2 4 1 

3 30 11 15 30 40 45 1 5 27 3 4 1 

4 35 9 10 35 27 65 1 10 20 3 4 1 

5 24 7 15 35 27 45 3 10 27 2 5 1 

6 35 11 8 24 40 65 3 5 20 2 5 1 

7 30 9 8 24 33 55 1 5 20 3 3 2 

8 24 7 10 30 27 45 1 8 24 3 3 2 

9 30 9 15 35 40 65 3 8 24 3 5 2 

10 35 11 10 30 33 55 3 10 27 3 5 2 

11 35 7 8 35 27 55 2 8 20 4 5 2 

12 24 11 15 24 33 45 2 5 24 4 5 2 

13 35 11 10 30 40 65 2 8 24 4 4 3 

14 30 9 15 35 33 55 2 10 27 4 4 3 

15 35 11 8 24 27 45 1 10 27 4 3 3 

16 24 7 15 35 40 65 1 5 20 4 3 3 

17 24 9 10 24 33 65 3 10 24 2 3 3 

18 30 7 8 30 40 55 3 8 27 2 3 3 

19 35 7 15 24 40 55 2 10 24 3 3 4 

20 24 11 8 35 33 65 2 8 27 3 3 4 

21 35 9 15 30 33 45 3 8 20 4 3 4 

22 30 11 10 35 27 55 3 5 24 4 3 4 

23 30 7 8 30 33 65 1 10 24 4 5 4 

24 24 9 10 24 40 55 1 8 27 4 5 4 

25 24 11 8 35 40 55 1 10 24 2 4 5 

26 35 7 15 24 33 65 1 8 27 2 4 5 

27 35 9 10 35 40 45 2 5 27 2 3 5 

28 30 11 15 30 27 65 2 10 20 2 3 5 

29 24 9 8 30 27 65 3 5 27 4 4 5 

30 30 7 10 24 40 45 3 10 20 4 4 5 

31 30 7 10 24 27 65 2 5 27 3 5 6 
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32 24 9 8 30 40 45 2 10 20 3 5 6 

33 24 11 15 24 27 55 3 8 20 3 4 6 

34 35 7 8 35 33 45 3 5 24 3 4 6 

35 30 11 10 35 33 45 1 8 20 2 5 6 

36 35 9 15 30 27 55 1 5 24 2 5 6 

 

 

Orthogonal optimal design for MNL model (D-error = 0.08471) 

1 35 11 8 24 40 55 1 5 24 3 5 1 

2 35 9 8 24 33 55 3 5 24 2 5 1 

3 30 7 8 35 27 45 2 5 20 4 5 1 

4 30 7 8 35 27 45 2 5 20 4 5 1 

5 30 11 8 35 40 45 1 5 20 3 5 1 

6 24 9 8 30 33 65 3 5 27 2 5 1 

7 30 7 8 35 27 45 2 5 20 4 5 2 

8 35 11 8 24 40 55 1 5 24 3 5 2 

9 35 9 8 24 33 55 3 8 24 2 4 2 

10 35 7 8 24 27 55 2 8 24 4 4 2 

11 24 9 8 30 33 65 3 5 27 2 5 2 

12 30 9 8 35 33 45 3 8 20 2 4 2 

13 24 11 10 30 40 65 1 8 27 3 4 3 

14 24 7 10 30 27 65 2 8 27 4 4 3 

15 30 9 10 35 33 45 3 8 20 2 4 3 

16 24 11 10 30 40 65 1 8 27 3 4 3 

17 24 11 10 30 40 65 1 8 27 3 4 3 

18 24 7 10 30 27 65 2 8 27 4 4 3 

19 35 9 15 24 33 55 3 8 24 2 4 4 

20 24 11 10 30 40 65 1 8 27 3 4 4 

21 35 7 10 24 27 55 2 8 24 4 4 4 

22 30 11 10 35 40 45 1 10 20 3 3 4 

23 24 9 10 30 33 65 3 10 27 2 3 4 

24 35 11 10 24 40 55 1 10 24 3 3 4 

25 24 7 10 30 27 65 2 10 27 4 3 5 

26 30 7 15 35 27 45 2 10 20 4 3 5 

27 24 9 15 30 33 65 3 10 27 2 3 5 

28 35 7 15 24 27 55 2 10 24 4 3 5 

29 30 11 15 35 40 45 1 10 20 3 3 5 

30 35 7 15 24 27 55 2 10 24 4 3 5 

31 30 9 15 35 33 45 3 10 20 2 3 6 

32 35 9 15 24 33 55 3 10 24 2 3 6 

33 30 11 15 35 40 45 1 10 20 3 3 6 

34 30 9 15 35 33 45 3 5 20 2 5 6 

35 35 11 15 24 40 55 1 5 24 3 5 6 

36 24 7 15 30 27 65 2 5 27 4 5 6 
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D-efficient design for MNL model (D-error = 0.08846) 

1 35 9 8 24 33 45 2 5 20 3 5 1 

2 35 9 15 24 33 45 1 10 20 3 3 1 

3 24 7 10 30 40 65 3 8 27 4 4 1 

4 35 11 8 24 33 45 1 5 20 2 5 1 

5 30 7 10 30 40 55 3 8 24 4 4 1 

6 24 7 10 35 33 65 3 8 27 4 4 1 

7 24 9 15 35 33 65 2 5 27 3 5 2 

8 30 11 15 35 27 45 1 5 24 2 5 2 

9 35 11 8 24 27 55 2 10 20 2 3 2 

10 24 11 15 35 27 65 1 10 27 2 3 2 

11 24 11 15 35 27 65 1 5 27 2 5 2 

12 35 7 10 24 40 45 3 8 20 4 4 2 

13 35 9 8 24 27 55 3 8 20 3 5 3 

14 24 11 8 35 27 65 1 10 27 2 3 3 

15 30 9 8 30 33 55 2 5 24 3 5 3 

16 35 9 15 24 27 45 2 10 20 3 3 3 

17 30 7 10 30 40 55 3 5 24 4 4 3 

18 24 7 15 35 40 65 3 8 27 4 4 3 

19 35 11 15 24 33 45 1 10 20 2 3 4 

20 24 11 8 35 33 65 1 10 27 2 3 4 

21 35 11 15 30 40 45 1 10 20 2 3 4 

22 30 9 10 30 33 55 2 10 24 3 3 4 

23 30 7 10 30 40 55 3 8 24 4 3 4 

24 24 11 8 35 27 65 1 5 27 2 5 4 

25 30 7 10 24 40 55 3 8 24 4 4 5 

26 30 7 10 30 40 45 3 8 24 4 4 5 

27 30 7 10 30 40 55 2 8 24 4 4 5 

28 30 9 8 30 33 55 2 10 24 3 3 5 

29 24 7 10 35 40 65 3 8 27 4 4 5 

30 30 7 10 30 40 55 3 10 24 4 4 5 

31 35 9 8 24 27 45 2 8 20 3 4 6 

32 35 9 15 24 27 45 2 5 20 3 5 6 

33 24 11 15 35 33 65 1 5 27 2 5 6 

34 30 9 8 30 27 55 2 5 24 3 5 6 

35 35 9 15 24 33 45 1 5 20 3 5 6 

36 24 11 8 35 27 65 2 10 27 2 3 6 

 1 

4. RESULT ANALYSIS 2 

Results in TABLE 4 indicate that, the two efficient designs produce lower D-error value (0.08471 3 

and 0.08846 for the OOC design and D-efficient design, respectively), while orthogonal design 4 
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produces higher D-error value (0.12362). The D-error of the orthogonal design is 1.46 times greater 1 

than the D-error value of the OOC design and 1.40 times greater than that of D-efficient design.  2 

Meanwhile, we are able to generate the AVC matrix for each design, shown in TABLE 5. The 3 

square roots of the diagonals of the AVC matrix represent the asymptotic standard errors of the 4 

parameter estimates. This suggests that on average, the asymptotic standard errors of the parameter 5 

estimates using the orthogonal design will be 1.18 to 1.21 times larger than these efficient designs. 6 

Clearly, the OOC and D-efficient designs are proved to be capable of providing more reliable 7 

parameter estimates than orthogonal design.  8 
TABLE 5  Asymptotic Variance-covariance (AVC) Matrix for Case Study 9 

 0

car  1  2  3  0

taxi  0

bus  4  

AVC matrix for orthogonal design 

0

car  0.1880 -0.0014 -0.0117 -0.0043 0.1411 0.1410 -0.0017 

1  -0.0014 0.0809 -0.0027 0.0002 0.0000 0.0009 0.0010 

2  -0.0117 -0.0027 0.0806 0.0036 0.0030 0.0039 0.0035 

3  -0.0043 0.0002 0.0036 0.1851 0.0003 0.0007 -0.0023 

0

taxi  0.1411 0.0000 0.0030 0.0003 0.4245 0.1417 -0.0012 

0

bus  0.1410 0.0009 0.0039 0.0007 0.1417 0.6064 0.0025 

4  -0.0017 0.0010 0.0035 -0.0023 -0.0012 0.0025 0.1942 

 

AVC matrix for optimal orthogonal choice design 

0

car  0.1907 -0.0015 -0.0199 -0.0037 0.1470 0.1379 -0.0048 

1  -0.0015 0.0555 -0.0002 -0.0029 0.0009 -0.0001 0.0000 

2  -0.0199 -0.0002 0.0764 0.0004 -0.0199 0.0086 0.0003 

3  -0.0037 -0.0029 0.0004 0.1932 0.0008 0.0000 -0.0407 

0

taxi  0.1470 0.0009 -0.0199 0.0008 0.4357 0.1379 -0.0069 

0

bus  0.1379 -0.0001 0.0086 0.0000 0.1379 0.5984 -0.0087 

4  -0.0048 0.0000 0.0003 -0.0407 -0.0069 -0.0087 0.1804 

 

AVC matrix for D-efficient design 

0

car  0.1902 -0.0021 -0.0108 -0.0022 0.1411 0.1396 -0.0023 

1  -0.0021 0.0455 0.0013 -0.0014 -0.0007 0.0010 -0.0012 

2  -0.0108 0.0013 0.0496 0.0026 -0.0024 0.0001 -0.0039 

3  -0.0022 -0.0014 0.0026 0.1757 -0.0026 0.0043 -0.0002 

0

taxi  0.1411 -0.0007 -0.0024 -0.0026 0.4237 0.1394 -0.0028 

0

bus  0.1396 0.0010 0.0001 0.0043 0.1394 0.6022 -0.0011 

4  -0.0023 -0.0012 -0.0039 -0.0002 -0.0028 -0.0011 0.1551 

 10 

On the other hand, the efficiency of the designs can be examined in terms of theoretical 11 

minimum sample size. Here, k  represents the prior value of each parameter and  1 kse   is the 12 

asymptotic standard error of parameter assuming only a single respondent. Tt  stands for the 13 

asymptotic t-value under the sample size T  and is assume be a certain significance level (i.e. in our 14 

case study, =1.98Tt ). Thus, the theoretical minimum sample size *

kT  for parameter k in an 15 

experimental design can be expressed as: 16 

 
 

2

1* T k

k

k

t se
T





 
 
 
 

 (18) 17 

The theoretical minimum sample size of every parameter for the three different designs is 18 

calculated as shown in TABLE 6. Looking at individual parameters, for all the designs, the most 19 

difficult parameter for estimation (having the highest theoretical minimum sample size to be 20 
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statistically significant in estimation) is 4 , needing a minimum sample size of 1903.35 in 1 

orthogonal design, 1151.62 in OOC design and 1520.14 in D-efficient design. Again, the OOC and 2 

D-efficient designs are confirmed to be much more efficient than orthogonal design, this time in 3 

terms of sample size requirements for individual parameter estimates. 4 
TABLE 6  Theoretical Minimum Sample Size for Case Study 5 

 
0

car  1  2  3  0

taxi  0

bus  4  

Minimum sample size for orthogonal design 
*

kT  0.51 198.23 5.06 50.39 3.40 1.65 1903.35 

Minimum sample size for optimal orthogonal choice design 

*

kT  0.52 109.53 2.90 78.82 3.49 1.63 1151.62 

Minimum sample size for D-efficient design 

*

kT  0.52 111.49 3.11 47.83 3.39 1.64 1520.14 

 6 

Furthermore, for OOC and D-efficient design, both of them can achieve almost the same 7 

efficiency in terms of either D-error value or theoretical minimum sample size, seeing from TABLE 8 

4 and TABLE 6. However, the complex experimental settings make it more difficult for D-efficient 9 

design to obtain the optimal solution. As a matter of fact, the current D-efficient design in TABLE 4 10 

catches the asymptotic optimal solution, of which the D-error equals 0.08846, after 265313 iterations. 11 

On the contrast, the computation work of OOC design is much simpler and the result can be worked 12 

out within a second. Seeing from this perspective, we can draw the conclusion that OOC design is 13 

superior to D-efficient design. 14 

5. CONCLUSION 15 

The SC experiment has been generally regarded as an effective method for discrete choice analysis, 16 

especially for newly introduced alternatives. Though orthogonal design has been used as the major 17 

experimental design method in practice, orthogonality is not that important in the nonlinear discrete 18 

choice models.  19 

In this paper, a feasible approach to construct an OOC design with alternative-specific attributes 20 

is provided. To hold the original principle of OOC design, two stages are required: (1) generating the 21 

OOC design with only generic attributes using the former method, (2) adding column vectors one by 22 

one for alternative-specific attributes and making them orthogonal with other vectors within an 23 

alternative. With the proposed method, the attribute levels of generic attributes are in the maximum 24 

difference across the alternatives, while the distribution of alternative-specific attribute levels would 25 

not affect the orthogonality for each alternative. 26 

The efficiency of the proposed method is examined by contrasting it with the conventional 27 

orthogonal design and another popular efficient design, D-efficient design. D-error, a common 28 

statistic corresponding with AVC matrix of the choice model, is chosen as the major measurement of 29 

experimental design efficiency. Also, minimum sample size based on each attribute parameter is 30 

calculated as the auxiliary criteria for the comparison. 31 

Applying the proposed method to design a field SC survey in China, the results indicate the 32 

advantage of using OOC design in two aspects: (1) it is proved to be more capable of producing 33 

statistically significant parameter estimates than conventional orthogonal design, while has almost 34 

the same efficiency with D-efficient design. (2) The solving process of OOC design is relatively easy. 35 

The feasible solution can be obtained by a simple loop statement. Then the AVC matrix and D-error 36 

value can be calculated. On the other hand, to work out a solution using D-efficient design, the 37 

D-error value needs to be generated and compared time after time. The searching for an optimal 38 

solution is time consuming. Thus, it is believed that OOC design outperforms D-efficient design in 39 

the sense of avoiding multiple iterations and complex computation work. 40 

 41 
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